论文标题

机器学习现场纽扣流体动力学

Machine learning active-nematic hydrodynamics

论文作者

Colen, Jonathan, Han, Ming, Zhang, Rui, Redford, Steven A., Lemma, Linnea M., Morgan, Link, Ruijgrok, Paul V., Adkins, Raymond, Bryant, Zev, Dogic, Zvonimir, Gardel, Margaret L., De Pablo, Juan J., Vitelli, Vincenzo

论文摘要

流体动力学理论可有效地描述了一些宏观参数以平衡的多体系统。但是,这种流体动力学参数很难从微观中得出。在主动物质中,很少有这个挑战更为明显,而在积极的问题上,对自动大规模动态的能源级联机制的理解很少。在这里,我们使用主动的命名化来证明神经网络可以直接从实验中提取流体动力学参数的时空变化。我们的算法将微管 - 运动蛋白和肌动蛋白 - 肌动蛋白实验分析为计算机视觉问题。与现有方法不同,神经网络可以确定多个参数(例如活动和弹性常数)如何随ATP和运动浓度而变化。此外,我们可以通过将自动编码器和经常性网络与残留架构相结合,预测这些混乱的多体系统的演变仅从过去的图像序列中。我们的研究为人工智能表征的表征和控制混乱领域的控制铺平了道路,即使不存在对潜在动态的了解。

Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such hydrodynamic parameters are difficult to derive from microscopics. Seldom is this challenge more apparent than in active matter where the energy cascade mechanisms responsible for autonomous large-scale dynamics are poorly understood. Here, we use active nematics to demonstrate that neural networks can extract the spatio-temporal variation of hydrodynamic parameters directly from experiments. Our algorithms analyze microtubule-kinesin and actin-myosin experiments as computer vision problems. Unlike existing methods, neural networks can determine how multiple parameters such as activity and elastic constants vary with ATP and motor concentration. In addition, we can forecast the evolution of these chaotic many-body systems solely from image-sequences of their past by combining autoencoder and recurrent networks with residual architecture. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems even when no knowledge of the underlying dynamics exists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源