论文标题

通过随机矩阵相互作用的扩散:通过随机泰勒扩展的通用性

Diffusions interacting through a random matrix: universality via stochastic Taylor expansion

论文作者

Dembo, Amir, Gheissari, Reza

论文摘要

考虑$(x_ {i}(t))$求解通过随机矩阵$ \ mathbf j =(j_ {ij})$与独立(不一定要分布的)随机系数相互作用的$ n $随机微分方程的系统。我们表明,从$ \ Mathbf j $独立于$μ$初始化的$(x_i(t))$的平均观测值的轨迹是通用的,即仅取决于分发$ \ Mathbf {J j} $的选择。我们采用一般的组合方法来证明具有随机系数的动态系统的通用性,将随机的泰勒扩展与匹配类型的参数相结合。我们的结果意味着普遍性的具体设置包括球形SK旋转玻璃中的衰老,Langevin Dynamics和梯度流以对称和非对称Hopfield网络。

Consider $(X_{i}(t))$ solving a system of $N$ stochastic differential equations interacting through a random matrix $\mathbf J = (J_{ij})$ with independent (not necessarily identically distributed) random coefficients. We show that the trajectories of averaged observables of $(X_i(t))$, initialized from some $μ$ independent of $\mathbf J$, are universal, i.e., only depend on the choice of the distribution $\mathbf{J}$ through its first and second moments (assuming e.g., sub-exponential tails). We take a general combinatorial approach to proving universality for dynamical systems with random coefficients, combining a stochastic Taylor expansion with a moment matching-type argument. Concrete settings for which our results imply universality include aging in the spherical SK spin glass, and Langevin dynamics and gradient flows for symmetric and asymmetric Hopfield networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源