论文标题
perelomov类型的相干状态(d + 1)在所有维循环量子重力下
Perelomov type coherent states of SO(D + 1) in all dimensional loop quantum gravity
论文作者
论文摘要
在本文中给出了对perelomov类型的So $(d+1)$相干状态的应用的全面研究。我们专注于So $(d+1)$的所谓简单表示,该表示可以解决简单限制和相关的均匀谐波函数空间。通过谐波函数配方,我们研究了相干状态的一般特性,例如峰值特性和内部产物。我们还讨论了在相干状态评估的几何算子的特性。特别是,我们计算了音量运算符的期望值,结果与从相干状态的经典标签中获得的结果一致,直到误差术语到大型表示标签$ n $的极限,即标准$ 3+1+1 $ 1 $ dimensional loop量子量子的模拟。
A comprehensive study of the application of SO$(D+1)$ coherent states of Perelomov type to loop quantum gravity in general spacetime dimensions $D+1\geq 3$ is given in this paper. We focus on so-called simple representations of SO$(D+1)$ which solve the simplicity constraint and the associated homogeneous harmonic function spaces. With the harmonic function formulation, we study general properties of the coherent states such as the peakedness properties and the inner product. We also discuss the properties of geometric operators evaluated in the coherent states. In particular, we calculate the expectation value of the volume operator, and the results agree with the ones obtained from the classical label of the coherent states up to error terms which vanish in the limit of large representation labels $N$, i.e. the analogue of the large spin limit in standard $3+1$-dimensional loop quantum gravity.