论文标题

使用参数化决策分析快速,最佳和有针对性的预测

Fast, Optimal, and Targeted Predictions using Parametrized Decision Analysis

论文作者

Kowal, Daniel R.

论文摘要

预测对于不确定性下的决策至关重要,并将有效性赋予统计推断。通过有针对性的预测,目标是优化针对特定目标决策任务的预测,我们通过功能代表。尽管经典决策分析从贝叶斯模型中提取了预测,但这些预测通常很难解释和缓慢计算。取而代之的是,我们为贝叶斯决策分析设计了一类参数化动作,以产生最佳,可扩展和简单的目标预测。对于各种动作参数化和损失函数 - 包括针对目标变量选择的稀疏性约束的线性动作 - 我们得出了最佳目标预测的方便表示,该预测产生了有效且可解释的解决方案。开发了定制的样本外预测指标,以评估和比较目标预测指标。通过仔细使用后验预测分布,我们引入了一个程序,该程序可以识别一组近乎最佳或可接受的靶向预测因子,这些预测因素为准确的目标预测提供了独特的见解和复杂性。模拟表明了出色的预测,估计和可变选择功能。针对国家健康和营养检查调查(NHANES)的体育活动数据构建了有针对性的预测,以更好地预测和理解日内体育锻炼的特征。

Prediction is critical for decision-making under uncertainty and lends validity to statistical inference. With targeted prediction, the goal is to optimize predictions for specific decision tasks of interest, which we represent via functionals. Although classical decision analysis extracts predictions from a Bayesian model, these predictions are often difficult to interpret and slow to compute. Instead, we design a class of parametrized actions for Bayesian decision analysis that produce optimal, scalable, and simple targeted predictions. For a wide variety of action parametrizations and loss functions--including linear actions with sparsity constraints for targeted variable selection--we derive a convenient representation of the optimal targeted prediction that yields efficient and interpretable solutions. Customized out-of-sample predictive metrics are developed to evaluate and compare among targeted predictors. Through careful use of the posterior predictive distribution, we introduce a procedure that identifies a set of near-optimal, or acceptable targeted predictors, which provide unique insights into the features and level of complexity needed for accurate targeted prediction. Simulations demonstrate excellent prediction, estimation, and variable selection capabilities. Targeted predictions are constructed for physical activity data from the National Health and Nutrition Examination Survey (NHANES) to better predict and understand the characteristics of intraday physical activity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源