论文标题
一项关于量子气的研究:光学晶格中的玻色子和一维相互作用的玻璃气体气体
A study on quantum gases: bosons in optical lattices and the one-dimensional interacting Bose gas
论文作者
论文摘要
限制在光学晶格中的骨气原子由Bose-Hubbard模型描述,可以在两个不同的阶段存在,Mott绝缘子或超氟,具体取决于系统参数的强度。在相边界附近,每两个相邻的莫特裂片之间都会发生变性。因此,非排定扰动理论无法为冷凝物密度带来有意义的结果:它可以在没有发生过渡的相位图中预测相变。在此激励的情况下,我们开发了两种不同的退化扰动方法来解决与退化有关的问题。此外,我们研究了谐波限制下的一维反相互作用的bose气体,并特别注意动量分布的渐近行为,这是棕褐色接触的特征的通用$ k^{ - 4} $衰减。后者构成了这种相互作用系统中短程相关性的直接签名,并提供了有关颗粒相互作用的作用的宝贵见解。我们研究了$ n $相互作用粒子在强烈相互作用极限下构成的系统。在这种状态下,强颗粒的相互作用使玻色子的行为与理想的费米气体相似。由于在有限交互时难以分析求解$ n $颗粒的系统,因此Tonks-Girardeau制度提供了一个有利的场景来探测触点。因此,我们能够为棕褐色的接触提供一个分析公式。此外,我们根据高温制度以及强烈相互作用的制度分析了棕褐色联系的缩放属性。最后,我们比较了棕褐色接触与量子蒙特卡洛模拟的分析计算,并讨论了规范和宏伟的合奏之间的一些根本差异。
Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model and can exist in two different phases, Mott insulator or superfluid, depending on the strength of the system parameters. In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent Mott lobes. Because of this, nondegenerate perturbation theory fails to give meaningful results for the condensate density: it predicts a phase transition in a point of the phase diagram where no transition occurs. Motivated by this, we develop two different degenerate perturbative methods to solve the degeneracy-related problems. Moreover, we study the one-dimensional repulsively interacting Bose gas under harmonic confinement, with special attention to the asymptotic behavior of the momentum distribution, which is a universal $k^{-4}$ decay characterized by the Tan's contact. The latter constitutes a direct signature of the short-range correlations in such an interacting system and provides valuable insights about the role of the interparticle interactions. We investigate the system constituted of $N$ interacting particles in the strongly interacting limit. In such a regime, the strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas. Because of the difficulty in analytically solving the system for $N$ particles at finite interaction, the Tonks-Girardeau regime provides a favorable scenario to probe the contact. Therefore, we are able to provide an analytical formula for the Tan's contact. Furthermore, we analyze the scaling properties of the Tan's contact in terms of $N$ in the high-temperature regime as well as in the strongly interacting regime. Finally, we compare our analytical calculations of the Tan's contact to quantum Monte Carlo simulations and discuss some fundamental differences between the canonical and the grand-canonical ensembles.