论文标题

引导$ \ ell_p $ - 高维度

Bootstrapping $\ell_p$-Statistics in High Dimensions

论文作者

Giessing, Alexander, Fan, Jianqing

论文摘要

本文考虑了一种新的引导程序,以估算高维$ \ ell_p $ statistics的分布,即$ \ ell_p $ -norms $ n $ n $独立$ d $ d $ d $ d $ d $二维随机矢量,$ d \ gg n $和$ p \ in [1,1,\ infty] $。我们提供了基于高斯近似的$ \ ell_p $统计量的采样分布的非反应表征,并表明在kolmogorov-smirnov距离下,在kolmogorov-smirnov距离下,在数据的协方差结构上,引导程序是一致的。作为一般理论的应用,我们提出了一个自举假设检验,以同时推断高维平均向量。我们在高维替代方案下建立了其渐近正确性和一致性,并讨论测试的功能以及相关置信集的大小。我们在模拟数据上以数值​​方式说明了引导程序和测试过程。

This paper considers a new bootstrap procedure to estimate the distribution of high-dimensional $\ell_p$-statistics, i.e. the $\ell_p$-norms of the sum of $n$ independent $d$-dimensional random vectors with $d \gg n$ and $p \in [1, \infty]$. We provide a non-asymptotic characterization of the sampling distribution of $\ell_p$-statistics based on Gaussian approximation and show that the bootstrap procedure is consistent in the Kolmogorov-Smirnov distance under mild conditions on the covariance structure of the data. As an application of the general theory we propose a bootstrap hypothesis test for simultaneous inference on high-dimensional mean vectors. We establish its asymptotic correctness and consistency under high-dimensional alternatives, and discuss the power of the test as well as the size of associated confidence sets. We illustrate the bootstrap and testing procedure numerically on simulated data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源