论文标题

加权表面代数的SOCLE等效度

Socle equivalences of weighted surface algebras

论文作者

Białkowski, Jerzy, Erdmann, Karin, Hajduk, Adam, Skowroński, Andrzej, Yamagata, Kunio

论文摘要

我们描述了在代数封闭的场$ k $上的有限维对称代数的结构和特性,这些代数$ k $等同于三角形表面的一般加权表面代数,在Erdmann和Skowroński中进行了研究(J. Algebra 544:170-227,2020)。特别是,我们证明所有这些代数都是周期4的驯服定期代数。本文的主要结果构成了对所有对称驯服定期定期代数的分类的重要步骤。

We describe the structure and properties of the finite-dimensional symmetric algebras over an algebraically closed field $K$ which are socle equivalent to the general weighted surface algebras of triangulated surfaces, investigated in Erdmann and Skowroński (J. Algebra 544:170-227, 2020). In particular, we prove that all these algebras are tame periodic algebras of period 4. The main results of this paper form an essential step towards a classification of all symmetric tame periodic algebras of period 4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源