论文标题

Leavitt Path代数中的不变理想

Invariants ideals in Leavitt Path algebras

论文作者

Canto, Cristóbal Gil, Barquero, Dolores Martín, González, Cándido Martín

论文摘要

众所周知,由$ \ pl(e)$生成的Leavitt Path elgebra $ l_k(e)$,$ \ pc(e)$或$ \ pec(e)$生成的理想是在同构中不变的。尽管$ \ pb(e)$生成的理想并不是不变的,但我们发现其\ lq \ lq天然\ rq \ rq \ rq \ rq \ replacement(确实是不变的):由$ \ pbp $的顶点(带有纯无限双来的Vertices)生成的一个。我们还提供了一些程序来构建以前已知的不变理想的不变理想。这些程序之一涉及拓扑,因此我们介绍了$ \ tops $拓扑,并将其与代数对应物中的歼灭者联系起来。更明确:如果$ h $是一个遗传性饱和的顶点子集,它提供了一个不变的理想,则其外部$ \ ext(h)$ in $ \ tops $ e^0 $ of $ e^0 $会产生一个新的不变理想。不变理想的另一个构造函数本质上更为分类。一些遗传组可以看作是从图到集合的函子(例如$ \ pl $等)。因此,第二种方法来自将诱导函子应用于商图的可能性。最简单的例子是已知的Socle链$ \ soc^{(1)}(\)\ subset \ soc^{(2)}(\)\ subset \ cdots $ all last证明是不变的。我们将这个想法推广到任何遗传性和饱和不变的函数。最后,我们研究了遗传性和饱和功能子的一种组成。

It is known that the ideals of a Leavitt path algebra $L_K(E)$ generated by $\Pl(E)$, by $\Pc(E)$ or by $\Pec(E)$ are invariant under isomorphism. Though the ideal generated by $\Pb(E)$ is not invariant we find its \lq\lq natural\rq\rq\ replacement (which is indeed invariant): the one generated by the vertices of $\Pbp$ (vertices with pure infinite bifurcations). We also give some procedures to construct invariant ideals from previous known invariant ideals. One of these procedures involves topology, so we introduce the $\tops$ topology and relate it to annihilators in the algebraic counterpart of the work. To be more explicit: if $H$ is a hereditary saturated subset of vertices providing an invariant ideal, its exterior $\ext(H)$ in the $\tops$ topology of $E^0$ generates a new invariant ideal. The other constructor of invariant ideals is more categorical in nature. Some hereditary sets can be seen as functors from graphs to sets (for instance $\Pl$, etc). Thus a second method emerges from the possibility of applying the induced functor to the quotient graph. The easiest example is the known socle chain $\soc^{(1)}(\ )\subset\soc^{(2)}(\ )\subset\cdots$ all of which are proved to be invariant. We generalize this idea to any hereditary and saturated invariant functor. Finally we investigate a kind of composition of hereditary and saturated functors which is associative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源