论文标题
p^n的最小关键内态性
Minimally critical endomorphisms of P^N
论文作者
论文摘要
我们研究了由f(x)= ax^d定义的n维投影空间的地图内态的动力学,其中a是矩阵和d至少为2。当d> n^2+n+1时,我们表明,这种形态的临界高度可与Moduli空间中的高度相提并论,使其在Moduli空间中具有自然常规化的Silverman的自然常规化。
We study the dynamics of the map endomorphism of N-dimensional projective space defined by f(X)=AX^d, where A is a matrix and d is at least 2. When d>N^2+N+1, we show that the critical height of such a morphism is comparable to its height in moduli space, confirming a case of a natural generalization of a conjecture of Silverman.