论文标题

使用梯度提升回归来改善环境太阳风模型预测

Using gradient boosting regression to improve ambient solar wind model predictions

论文作者

Bailey, R. L., Reiss, M. A., Arge, C. N., Möstl, C., Owens, M. J., Amerstorfer, U. V., Henney, C. J., Amerstorfer, T., Weiss, A. J., Hinterreiter, J.

论文摘要

研究环境太阳风是我们太阳天气研究的重要组成部分。行星际空间中的环境太阳风流决定了太阳风暴在到达地球之前,尤其是在太阳能最小值期间,太阳风暴如何通过地球层发展,这本身就是地球磁场活动中活动的驱动力。因此,准确地预测环境太阳风流对于太空天气意识至关重要。在这里,我们提出了一种机器学习方法,其中使用太阳能电晕的磁模型的解决方案用于输出地球附近的太阳风条件。将结果与全面验证分析中的观察结果和现有模型进行了比较,而新模型几乎在所有措施中都优于现有模型。此外,这种方法提供了一种新的观点,可以讨论不同输入数据对环境太阳风建模的作用,以及这告诉我们有关基础物理过程的信息。这里讨论的最终模型代表了一种非常快速,验证和开源方法,用于预测地球环境太阳风。

Studying the ambient solar wind, a continuous pressure-driven plasma flow emanating from our Sun, is an important component of space weather research. The ambient solar wind flows in interplanetary space determine how solar storms evolve through the heliosphere before reaching Earth, and especially during solar minimum are themselves a driver of activity in the Earth's magnetic field. Accurately forecasting the ambient solar wind flow is therefore imperative to space weather awareness. Here we present a machine learning approach in which solutions from magnetic models of the solar corona are used to output the solar wind conditions near the Earth. The results are compared to observations and existing models in a comprehensive validation analysis, and the new model outperforms existing models in almost all measures. In addition, this approach offers a new perspective to discuss the role of different input data to ambient solar wind modeling, and what this tells us about the underlying physical processes. The final model discussed here represents an extremely fast, well-validated and open-source approach to the forecasting of ambient solar wind at Earth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源