论文标题

XTE J1752-223处于硬态状态的磁盘是否扩展到最内向的稳定圆轨道?

Does the disk in the hard state of XTE J1752-223 extend to the innermost stable circular orbit?

论文作者

Zdziarski, Andrzej, De Marco, Barbara, Szanecki, Michal, Niedzwiecki, Andrzej, Markowitz, Alex

论文摘要

RXTE在稳定的硬状态下观察到了积聚的黑洞二进制XTE XTE J1752--223,产生了前所未有的统计质量的3--140 KEV光谱。它已发表的模型需要一个单个构造谱,该频谱从靠近最内向稳定圆形轨道的磁盘反射。我们研究了该模型以及许多其他单次弹药模型(产生类似低的内部半径),但发现它们违反了许多基本的物理约束,例如,它们的紧凑性远高于对均衡允许的最大值。我们还研究了Swift/XRT的同时性0.55--6 keV频谱,发现它通过吸收的功率定律和磁盘为0.1 keV的磁盘黑体很好地拟合。磁盘黑体的归一化对应于$ \ gtrsim $ 20的重力半径及其温度的内部半径,以通过热内流量照射截短的磁盘。我们还开发了一个包括磁盘照射和内在耗散的构成/反射模型,但发现它没有产生任何令人满意的拟合。另一方面,我们发现来自RXTE的$ \ leq $ 10 kev频段可以通过磁盘的反射拟合,而内部半径为$ \ gtrsim $ 100引力radii,然后将其型号低估为$> $> $> $ 10 kev $ <$ <$ <$ <$ 10%。我们认为,上述结果的最合理的解释是来源的不均匀性,局部光谱随着半径的减少而变硬。我们的结果支持该来源中复杂的组合区域和大磁盘截断半径的存在。

The accreting black-hole binary XTE J1752--223 was observed in a stable hard state for 25 d by RXTE, yielding a 3--140 keV spectrum of unprecedented statistical quality. Its published model required a single Comptonization spectrum reflecting from a disk close to the innermost stable circular orbit. We studied that model as well as a number of other single-Comptonization models (yielding similarly low inner radii), but found they violate a number of basic physical constraints, e.g., their compactness is much above the maximum allowed by pair equilibrium. We also studied the contemporaneous 0.55--6 keV spectrum from the Swift/XRT and found it well fitted by an absorbed power law and a disk blackbody with the innermost temperature of 0.1 keV. The normalization of the disk blackbody corresponds to an inner radius of $\gtrsim$20 gravitational radii and its temperature, to irradiation of the truncated disk by a hot inner flow. We have also developed a Comptonization/reflection model including the disk irradiation and intrinsic dissipation, but found that it does not yield any satisfactory fits. On the other hand, we found that the $\leq$10 keV band from RXTE is much better fitted by a reflection from a disk with the inner radius $\gtrsim$100 gravitational radii, which model then underpredicts the spectrum at $>$10 keV by $<$10%. We argue that the most plausible explanation of the above results is inhomogeneity of the source, with the local spectra hardening with the decreasing radius. Our results support the presence of a complex Comptonization region and a large disk truncation radius in this source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源