论文标题

二维正方形晶格的两波段模型的结理论,具有高拓扑数

Knot theory for two-band model of two-dimensional square lattice with high topological numbers

论文作者

Liu, Xin, Chang, Zhiwen, Hao, Weichang

论文摘要

提出了针对二维方晶格的结理论,该理论阐明了具有高拓扑数的新二维材料的设计。我们考虑了一个两波段模型,重点是霍尔电导σxy= e^2/hbar*p,其中p是拓扑数,即所谓的pontrjagin索引。通过将周期动量组件KX和KY重新解释为两个纠缠结的字符串参数,我们发现P变成了结之间的高斯链接数。这导致了文献中典型的p-评估的成功重新启动:p = 0; {\ pm} 1。此外,借助此明确的结理论图片,我们修改了两波段模型以获得更高的拓扑数,p = 0; {\ pm} 1; {\ pm} 2。

A knot theory for two-dimensional square lattice is proposed, which sheds light on design of new two-dimensional material with high topological numbers. We consider a two-band model, focusing on the Hall conductance σxy = e^2/hbar*P, where P is a topological number, the so-called Pontrjagin index. By re-interpreting the periodic momentum components kx and ky as the string parameters of two entangled knots, we discover that P becomes the Gauss linking number between the knots. This leads to a successful re-derivation of the typical P-evaluations in literature: P = 0;{\pm}1. Furthermore, with the aid of this explicit knot theoretical picture we modify the two-band model to achieve higher topological numbers, P = 0;{\pm}1;{\pm}2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源