论文标题

关于Costas排列的互相关的注释

A Note on the Cross-Correlation of Costas Permutations

论文作者

Gomez-Perez, Domingo, Winterhof, Arne

论文摘要

我们以Drakakis等人的工作为基础。 (2011年)关于韦尔奇和戈洛姆·科斯塔斯置换家族的最大互相关。特别是,我们解决了他们的一些猜想。更确切地说,我们证明了两个结果。 首先,对于$φ(p-1)$不同的welch costas $ \ {1,\ ldots,p-1 \} $是$(p-1)/t $的最大互相相关,$ \ {1,\ ldots,p-1 \} $ 1+p^{1/2} $否则。这里$φ$表示Euler的基本功能,如果$(P-1)/2 $也是PREME,则Prime $ P $是安全的。 其次,对于主要功率,$ q \ ge 4 $最大的golomb costas costas排列$ \ \ {1,\ ldots,q-2 \} $是$(q-1)/t-1 $如果$(q-1)/t-1 $是$(q-1)/2 $ q $ q $ q $ q是$ q $ q- 1 $ Q-1 $不是Prime,最多$ 1+Q^{1/2} $否则。请注意,我们认为一个比Drakakis等人更小的家庭。我们的家庭尺寸为$φ(Q-1)$,而$φ(Q-1)^2 $不同的Golomb Costas排列。 Drakakis等人表中给出的较大家族的最大互相关。对于$ Q $,比我们的界限(对于较小的家庭而言)大。

We build on the work of Drakakis et al. (2011) on the maximal cross-correlation of the families of Welch and Golomb Costas permutations. In particular, we settle some of their conjectures. More precisely, we prove two results. First, for a prime $p\ge 5$, the maximal cross-correlation of the family of the $φ(p-1)$ different Welch Costas permutations of $\{1,\ldots,p-1\}$ is $(p-1)/t$, where $t$ is the smallest prime divisor of $(p-1)/2$ if $p$ is not a safe prime and at most $1+p^{1/2}$ otherwise. Here $φ$ denotes Euler's totient function and a prime $p$ is a safe prime if $(p-1)/2$ is also prime. Second, for a prime power $q\ge 4$ the maximal cross-correlation of a subfamily of Golomb Costas permutations of $\{1,\ldots,q-2\}$ is $(q-1)/t-1$ if $t$ is the smallest prime divisor of $(q-1)/2$ if $q$ is odd and of $q-1$ if $q$ is even provided that $(q-1)/2$ and $q-1$ are not prime, and at most $1+q^{1/2}$ otherwise. Note that we consider a smaller family than Drakakis et al. Our family is of size $φ(q-1)$ whereas there are $φ(q-1)^2$ different Golomb Costas permutations. The maximal cross-correlation of the larger family given in the tables of Drakakis et al. is larger than our bound (for the smaller family) for some $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源