论文标题
通过神经预测学习身体限制
Learning Physical Constraints with Neural Projections
论文作者
论文摘要
我们提出了一个新的神经网络家族,以通过学习基础限制来预测物理系统的行为。神经投影操作员是我们方法的核心,该方法由具有嵌入式递归体系结构的轻量级网络组成,该网络可以交互实施学习的基础约束,并预测了不同物理系统的各种行为。我们的神经投影操作员是由基于位置的动力学模型的动机,该模型已在游戏和视觉效果行业中广泛使用,以统一各种快速物理模拟器。我们的方法可以自动有效地发现从观察点数据(例如长度,角度,弯曲,碰撞,边界效应及其任意组合)的广泛约束,而无需任何连通性先验。我们与可配置的网络连接机制一起提供多组点表示,以合并用于处理复杂物理系统的先验输入。我们以统一和简单的方式学习了一组具有挑战性的物理系统,包括:具有复杂几何形状的刚体,长度和弯曲,弯曲的柔软和刚性的身体以及具有复杂边界的多对象碰撞的僵硬的身体,证明了我们的方法的功效。
We propose a new family of neural networks to predict the behaviors of physical systems by learning their underpinning constraints. A neural projection operator lies at the heart of our approach, composed of a lightweight network with an embedded recursive architecture that interactively enforces learned underpinning constraints and predicts the various governed behaviors of different physical systems. Our neural projection operator is motivated by the position-based dynamics model that has been used widely in game and visual effects industries to unify the various fast physics simulators. Our method can automatically and effectively uncover a broad range of constraints from observation point data, such as length, angle, bending, collision, boundary effects, and their arbitrary combinations, without any connectivity priors. We provide a multi-group point representation in conjunction with a configurable network connection mechanism to incorporate prior inputs for processing complex physical systems. We demonstrated the efficacy of our approach by learning a set of challenging physical systems all in a unified and simple fashion including: rigid bodies with complex geometries, ropes with varying length and bending, articulated soft and rigid bodies, and multi-object collisions with complex boundaries.