论文标题
使用主动云微物理模型对海王星的黑点进行史诗模拟
EPIC Simulations of Neptune's Dark Spots Using an Active Cloud Microphysical Model
论文作者
论文摘要
Voyager 2观察到的大暗点(GDS-89)是在海王星上观察到的几个大规模涡旋中的第一个,其中最近是在2018年在北半球观察到的(NDS-2018)。对这些特征的持续观察是约束云形成,漂移,形状振荡和其他动态属性。为了有效地建模这些特征,需要对甲烷云微物理学进行明确计算。使用显式行星等等坐标的更新版本及其主动云微物理学模块来解释甲烷的凝结,我们研究了大规模涡流在海王星上的演变。我们对甲烷深度丰度和云形成对涡旋稳定性和动态的影响进行建模。在我们的模拟中,与涡旋外部相比,涡流内部甲烷蒸气密度的对比度鲜明。甲烷蒸气柱密度类似于光学深度,并提供了更一致的示踪剂来跟踪涡旋,因此我们在潜在的涡度上使用该变量。我们与GD的子午漂移率相匹配,并对北半球涡流的演变(例如NDS-2018)获得初步见解。
The Great Dark Spot (GDS-89) observed by Voyager 2 was the first of several large-scale vortices observed on Neptune, the most recent of which was observed in 2018 in the northern hemisphere (NDS-2018). Ongoing observations of these features are constraining cloud formation, drift, shape oscillations, and other dynamic properties. In order to effectively model these characteristics, an explicit calculation of methane cloud microphysics is needed. Using an updated version of the Explicit Planetary Isentropic Coordinate General Circulation Model (EPIC GCM) and its active cloud microphysics module to account for the condensation of methane, we investigate the evolution of large scale vortices on Neptune. We model the effect of methane deep abundance and cloud formation on vortex stability and dynamics. In our simulations, the vortex shows a sharp contrast in methane vapor density inside compared to outside the vortex. Methane vapor column density is analogous to optical depth and provides a more consistent tracer to track the vortex, so we use that variable over potential vorticity. We match the meridional drift rate of the GDS and gain an initial insight into the evolution of vortices in the northern hemisphere, such as the NDS-2018.