论文标题

图形原型网络,用于归因网络上的几次学习

Graph Prototypical Networks for Few-shot Learning on Attributed Networks

论文作者

Ding, Kaize, Wang, Jianling, Li, Jundong, Shu, Kai, Liu, Chenghao, Liu, Huan

论文摘要

如今,归因的网络在无数的高影响应用程序中无处不在,例如社交网络分析,财务欺诈检测和药物发现。作为归因网络的中心分析任务,节点分类在研究界受到了很多关注。在现实世界中的归因网络中,节点类的很大一部分仅包含有限的标记实例,从而渲染了长尾节点类别分布。现有的节点分类算法没有装备来处理\ textit {fig-shot}节点类。作为一种补救措施,很少有学习的学习吸引了研究界的关注。但是,很少有射击节点分类仍然是一个具有挑战性的问题,因为我们需要解决以下问题:(i)如何从属性网络中提取元知识以进行少量节点分类? (ii)如何确定每个标记的实例的信息,以构建强大而有效的模型?为了回答这些问题,在本文中,我们提出了一个图形元学习框架 - 图原型网络(GPN)。通过构建一个半监督节点分类任务以模仿实际的测试环境,GPN能够在属性网络上执行\ textIt {meta-arearning},并得出了处理目标分类任务的高度概括的模型。广泛的实验证明了GPN在几个射线淋巴结中具有卓越的能力。

Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contain limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the \textit{few-shot} node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework -- Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform \textit{meta-learning} on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源