论文标题
Cine心脏MRI运动伪影使用复发性神经网络减少
Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural Network
论文作者
论文摘要
Cine心脏磁共振成像(MRI)广泛用于诊断心脏病,这要归功于其在出色的对比度中呈现心血管特征的能力。与计算机断层扫描(CT)相比,MRI需要长时间的扫描时间,这不可避免地会诱导运动伪像并引起患者的不适。因此,已经有很大的临床动机来开发技术以减少扫描时间和运动伪影。鉴于其在其他医学成像任务中的成功应用,例如MRI超分辨率和CT金属伪像减少,深度学习是心脏MRI运动伪像减少的有前途的方法。在本文中,我们提出了一个经常性的神经网络,以同时从采样不足的运动毛发毛心脏心脏图像中提取空间和时间特征,以提高图像质量。实验结果表明,两个临床测试数据集上的图像质量大大提高。同样,我们的方法可以以增强的时间分辨率启用数据驱动的框架插值。与现有方法相比,我们的深度学习方法在结构相似性(SSIM)和峰值信噪比(PSNR)方面具有出色的性能。
Cine cardiac magnetic resonance imaging (MRI) is widely used for diagnosis of cardiac diseases thanks to its ability to present cardiovascular features in excellent contrast. As compared to computed tomography (CT), MRI, however, requires a long scan time, which inevitably induces motion artifacts and causes patients' discomfort. Thus, there has been a strong clinical motivation to develop techniques to reduce both the scan time and motion artifacts. Given its successful applications in other medical imaging tasks such as MRI super-resolution and CT metal artifact reduction, deep learning is a promising approach for cardiac MRI motion artifact reduction. In this paper, we propose a recurrent neural network to simultaneously extract both spatial and temporal features from under-sampled, motion-blurred cine cardiac images for improved image quality. The experimental results demonstrate substantially improved image quality on two clinical test datasets. Also, our method enables data-driven frame interpolation at an enhanced temporal resolution. Compared with existing methods, our deep learning approach gives a superior performance in terms of structural similarity (SSIM) and peak signal-to-noise ratio (PSNR).