论文标题

神经动力学系统:平衡结构和灵活性

Neural Dynamical Systems: Balancing Structure and Flexibility in Physical Prediction

论文作者

Mehta, Viraj, Char, Ian, Neiswanger, Willie, Chung, Youngseog, Nelson, Andrew Oakleigh, Boyer, Mark D, Kolemen, Egemen, Schneider, Jeff

论文摘要

我们介绍了神经动力学系统(NDS),这是一种在各种灰色盒子设置中学习动力学模型的方法,该方法以普通微分方程系统的形式结合了先验知识。 NDS使用神经网络来估计系统的免费参数,预测残差项,并随着时间的流逝而数值集成以预测未来状态。一个关键的见解是,许多真正的动态感兴趣系统都难以建模,因为动态可能会随着推出而异。我们通过将先前状态的轨迹作为NDS的输入来缓解此问题,并使用上述轨迹训练它以动态估算系统参数。我们发现,与不融合系统识别文献中的先验知识和方法相比,NDS以更高的精度学习动力学,并且样本更少。我们首先证明了这些优势在合成动力学系统上,然后证明了从核融合反应器中从氘拍摄中捕获的真实数据。最后,我们证明可以将这些好处用于小型实验中。

We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings which incorporates prior knowledge in the form of systems of ordinary differential equations. NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states. A key insight is that many real dynamical systems of interest are hard to model because the dynamics may vary across rollouts. We mitigate this problem by taking a trajectory of prior states as the input to NDS and train it to dynamically estimate system parameters using the preceding trajectory. We find that NDS learns dynamics with higher accuracy and fewer samples than a variety of deep learning methods that do not incorporate the prior knowledge and methods from the system identification literature which do. We demonstrate these advantages first on synthetic dynamical systems and then on real data captured from deuterium shots from a nuclear fusion reactor. Finally, we demonstrate that these benefits can be utilized for control in small-scale experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源