论文标题

电磁脉冲的时空不可分割性的度量

Measures of space-time non-separability of electromagnetic pulses

论文作者

Shen, Yijie, Zdagkas, Apostolos, Papasimakis, Nikitas, Zheludev, Nikolay I.

论文摘要

电磁脉冲通常被视为麦克斯韦方程的时空(或空间频率)可分离溶液,其中可以分别处理空间和时间(光谱)依赖性。与这种传统的观点相反,结构化光和拓扑光学的最新进展突出了脉冲具有复杂拓扑和时空不可分离结构的非平凡波 - 物质相互作用,以及它们的能量和信息传递的潜力。这种脉冲的一个特征例子是“飞翔的甜甜圈”(FD),这是一种无分离的环形脉冲,几乎没有循环脉冲,并在物质上链接到环形和非辐射(anapole)激发。在这里,我们提出了一种量子力学启发的方法,用于表征结构化脉冲中时空不可分割性。类似于纠缠量子系统的不可分割性,我们介绍了空间光谱纠缠状态的概念,以描述经典电磁脉冲的时空不可分割性,并开发了一种通过状态层析成像重建相应密度矩阵的方法。我们将我们的方法应用于FD脉冲,并获得相应的忠诚度,同意和形成的纠缠。我们证明,从量子力学中挖出的这种特性在传播时定量地表征了一般时空结构脉冲的演变。

Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwell's equations, where spatial and temporal (spectral) dependence can be treated separately. In contrast to this traditional viewpoint, recent advances in structured light and topological optics have highlighted the non-trivial wave-matter interactions of pulses with complex topology and space-time non-separable structure, as well as their potential for energy and information transfer. A characteristic example of such a pulse is the "Flying Doughnut" (FD), a space-time non-separable toroidal few-cycle pulse with links to toroidal and non-radiating (anapole) excitations in matter. Here, we propose a quantum-mechanics-inspired methodology for the characterization of space-time non-separability in structured pulses. In analogy to the non-separability of entangled quantum systems, we introduce the concept of space-spectrum entangled states to describe the space-time non-separability of classical electromagnetic pulses and develop a method to reconstruct the corresponding density matrix by state tomography. We apply our method to the FD pulse and obtain the corresponding fidelity, concurrence, and entanglement of formation. We demonstrate that such properties dug out from quantum mechanics quantitatively characterize the evolution of the general spatiotemporal structured pulse upon propagation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源