论文标题

分布的个人公平性

Distributional Individual Fairness in Clustering

论文作者

Anderson, Nihesh, Bera, Suman K., Das, Syamantak, Liu, Yang

论文摘要

在本文中,我们启动了公平聚类的研究,以确保相似个体之间的分布相似性。为了回应改善机器学习的公平性,最近的论文研究了聚类算法的公平性,并专注于统计奇偶校验/集体公平的范式。这些努力试图最大程度地减少对人口中某些受保护群体的偏见。但是,据我们所知,Dwork等人介绍了个人公平的替代观点。 (ITCS 2012)在分类的背景下,迄今尚未考虑聚类。与Dwork等人类似,我们采用了个人公平概念,该概念要求将类似的个体类似地用于聚类问题。我们将$ f $ divergence的概念用作统计相似性的量度,从而显着概括了Dwork等人使用的相似性。我们介绍了一个框架,用于将嵌入度量空间中的个人分配给有限数量的集群中心的概率分布。目的是确保(a)在预期中的聚类成本较低,并且(b)在给定的公平空间中彼此亲近的个体映射到统计上相似的分布。 我们提供了一种用于聚类的算法,该算法具有$ p $ -norm的目标($ k $ - 中心,$ k $ -means是特殊情况)和具有可证明的近似保证的个人公平限制。我们将此框架扩展到包括群体公平性和受保护群体内部的个人公平性。最后,我们观察到个人公平意味着群体公平的条件。我们提供了广泛的实验证据,以证明我们方法的有效性。

In this paper, we initiate the study of fair clustering that ensures distributional similarity among similar individuals. In response to improving fairness in machine learning, recent papers have investigated fairness in clustering algorithms and have focused on the paradigm of statistical parity/group fairness. These efforts attempt to minimize bias against some protected groups in the population. However, to the best of our knowledge, the alternative viewpoint of individual fairness, introduced by Dwork et al. (ITCS 2012) in the context of classification, has not been considered for clustering so far. Similar to Dwork et al., we adopt the individual fairness notion which mandates that similar individuals should be treated similarly for clustering problems. We use the notion of $f$-divergence as a measure of statistical similarity that significantly generalizes the ones used by Dwork et al. We introduce a framework for assigning individuals, embedded in a metric space, to probability distributions over a bounded number of cluster centers. The objective is to ensure (a) low cost of clustering in expectation and (b) individuals that are close to each other in a given fairness space are mapped to statistically similar distributions. We provide an algorithm for clustering with $p$-norm objective ($k$-center, $k$-means are special cases) and individual fairness constraints with provable approximation guarantee. We extend this framework to include both group fairness and individual fairness inside the protected groups. Finally, we observe conditions under which individual fairness implies group fairness. We present extensive experimental evidence that justifies the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源