论文标题

一项有关本地化和映射深度学习的调查:迈向空间机智能时代

A Survey on Deep Learning for Localization and Mapping: Towards the Age of Spatial Machine Intelligence

论文作者

Chen, Changhao, Wang, Bing, Lu, Chris Xiaoxuan, Trigoni, Niki, Markham, Andrew

论文摘要

基于深度学习的本地化和映射最近引起了极大的关注。基于深度学习的解决方案不是通过剥削物理模型或几何理论来创建手工设计的算法,而是以数据驱动方式解决问题的替代方法。这些方法受益于越来越多的数据和计算能力,这些方法正在快速发展为一个新的领域,该领域提供了准确,可靠的系统,以跟踪运动和估计现实应用程序的场景及其结构。在这项工作中,我们提供了一项全面的调查,并提出了一种新的分类法,以使用深度学习进行本地化和映射。我们还讨论了当前模型的局限性,并指示可能的未来方向。涵盖了广泛的主题,从学习绕组估计,映射到全局本地化以及同时定位和映射(SLAM)。我们重新审视了使用板载传感器感知自我运动和场景理解的问题,并通过将这些模块集成到潜在的空间机器智能系统(SMIS)中来展示如何解决它。我们希望这项工作可以将机器人技术,计算机视觉和机器学习社区的新兴作品连接起来,并为未来的研究人员提供深入学习来解决本地化和映射问题的指南。

Deep learning based localization and mapping has recently attracted significant attention. Instead of creating hand-designed algorithms through exploitation of physical models or geometric theories, deep learning based solutions provide an alternative to solve the problem in a data-driven way. Benefiting from ever-increasing volumes of data and computational power, these methods are fast evolving into a new area that offers accurate and robust systems to track motion and estimate scenes and their structure for real-world applications. In this work, we provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning. We also discuss the limitations of current models, and indicate possible future directions. A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping (SLAM). We revisit the problem of perceiving self-motion and scene understanding with on-board sensors, and show how to solve it by integrating these modules into a prospective spatial machine intelligence system (SMIS). It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities, and serve as a guide for future researchers to apply deep learning to tackle localization and mapping problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源