论文标题
学习混合系统的Koopman表示
Learning Koopman Representations for Hybrid Systems
论文作者
论文摘要
Koopman操作员将非线性动力学系统提升到可观察到的功能空间,其中动力学是线性的。在本文中,我们为混合系统提供了三种不同的Koopman表示形式。第一个是特定于开关系统的,第二和第三保留了原始的混合动力学,同时消除了离散状态变量。第二种方法是直接的,我们提供了与第三个持有的转换相关的条件。消除离散状态变量在使用数据驱动的方法学习Koopman操作员及其可观察物时提供了计算利益。在此之后,我们使用深度学习在两个测试案例上实施每个表示,讨论与这些实施相关的挑战,并提出未来工作的领域。
The Koopman operator lifts nonlinear dynamical systems into a functional space of observables, where the dynamics are linear. In this paper, we provide three different Koopman representations for hybrid systems. The first is specific to switched systems, and the second and third preserve the original hybrid dynamics while eliminating the discrete state variables; the second approach is straightforward, and we provide conditions under which the transformation associated with the third holds. Eliminating discrete state variables provides computational benefits when using data-driven methods to learn the Koopman operator and its observables. Following this, we use deep learning to implement each representation on two test cases, discuss the challenges associated with those implementations, and propose areas of future work.