论文标题

针对对手的自适应离散化:Lipschitz强盗,动态定价和拍卖调整

Adaptive Discretization against an Adversary: Lipschitz bandits, Dynamic Pricing, and Auction Tuning

论文作者

Podimata, Chara, Slivkins, Aleksandrs

论文摘要

Lipschitz Bandits是多军匪徒的重要版本,研究大型,结构化的动作空间,例如$ [0,1] $ Interval,其中保证类似的动作具有相似的奖励。这里的一个中心主题是动作空间的自适应离散化,该空间逐渐``放大''在其更有希望的区域上。目的是利用``更好''的问题实例,同时保持近乎最佳的最差表现。尽管该问题的随机版本是充分理解的,但具有对抗奖励的一般版本却不是。 我们提供第一种算法(\ emph {对抗性缩放}),以在对抗版本中自适应离散化,并得出了与实例有关的遗憾界限。特别是,我们恢复了针对对抗版本的最佳最佳遗憾,并为随机版本绑定了实例依赖的后悔。 我们将算法应用于几种基本应用程序(包括动态定价和拍卖储备调整),所有这些都在对抗奖励模型下。尽管这些域通常违反Lipschitzness,但我们的分析仅需要较弱的版本,可以在没有其他平滑度假设的情况下进行有意义的遗憾界限。值得注意的是,我们将结果扩展到具有非平滑奖励结构的多产品动态定价,这种设置甚至无法满足单方面的Lipschitzness。

Lipschitz bandits is a prominent version of multi-armed bandits that studies large, structured action spaces such as the $[0,1]$ interval, where similar actions are guaranteed to have similar rewards. A central theme here is the adaptive discretization of the action space, which gradually ``zooms in'' on the more promising regions thereof. The goal is to take advantage of ``nicer'' problem instances, while retaining near-optimal worst-case performance. While the stochastic version of the problem is well-understood, the general version with adversarial rewards is not. We provide the first algorithm (\emph{Adversarial Zooming}) for adaptive discretization in the adversarial version, and derive instance-dependent regret bounds. In particular, we recover the worst-case optimal regret bound for the adversarial version, and the instance-dependent regret bound for the stochastic version. We apply our algorithm to several fundamental applications -- including dynamic pricing and auction reserve tuning -- all under adversarial reward models. While these domains often violate Lipschitzness, our analysis only requires a weaker version thereof, allowing for meaningful regret bounds without additional smoothness assumptions. Notably, we extend our results to multi-product dynamic pricing with non-smooth reward structures, a setting which does not even satisfy one-sided Lipschitzness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源