论文标题
3D单光对象检测的生成稀疏检测网络
Generative Sparse Detection Networks for 3D Single-shot Object Detection
论文作者
论文摘要
由于3D对象检测的潜在适用性在许多有前途的领域(例如机器人技术和增强现实),因此对3D对象的检测进行了广泛的研究。然而,3D数据的稀疏性质为这项任务带来了独特的挑战。最值得注意的是,3D点云的可观察表面与实例的中心不相交,以接地边界框预测。为此,我们提出了一种生成稀疏检测网络(GSDN),这是一个完全横向趋化的单杆稀疏检测网络,可有效地生成对对象建议的支持。我们模型的关键组成部分是一种生成稀疏张量解码器,该解码器使用一系列的转换卷积和修剪图层来扩展稀疏张量的支撑,同时丢弃不太可能的对象中心以保持最小的运行时和内存足迹。 GSDN可以使用单个完全横向的进料传球处理前所未有的大规模输入,因此不需要像其他方法那样由滑动窗口缝制的启发式后处理阶段。我们在三个3D室内数据集上验证了我们的方法,包括大规模3D室内重建数据集,其中我们的方法的相对改善的相对提高了7.14%,而比以前的最佳工作快3.78倍,以优于最先进的方法。
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality. Yet, the sparse nature of the 3D data poses unique challenges to this task. Most notably, the observable surface of the 3D point clouds is disjoint from the center of the instance to ground the bounding box prediction on. To this end, we propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network that efficiently generates the support for object proposals. The key component of our model is a generative sparse tensor decoder, which uses a series of transposed convolutions and pruning layers to expand the support of sparse tensors while discarding unlikely object centers to maintain minimal runtime and memory footprint. GSDN can process unprecedentedly large-scale inputs with a single fully-convolutional feed-forward pass, thus does not require the heuristic post-processing stage that stitches results from sliding windows as other previous methods have. We validate our approach on three 3D indoor datasets including the large-scale 3D indoor reconstruction dataset where our method outperforms the state-of-the-art methods by a relative improvement of 7.14% while being 3.78 times faster than the best prior work.