论文标题

椭圆形的R-Matrices和Feigin和Odesskii的椭圆形代数

Elliptic R-matrices and Feigin and Odesskii's elliptic algebras

论文作者

Chirvasitu, Alex, Kanda, Ryo, Smith, S. Paul

论文摘要

Feigin和Odesskii引入的代数$ q_ {n,k}(e,τ)$作为四维sklyanin代数的概括,形成了由二次代数的家族,由二次代数由cocrime Integers $ n> k \ ge 1 $ $ n> k \ ge 1 $,一个复杂的eLlipt elliptic curve $ e $ $ e $ $ $ $,以及一个点。本文的主要结果是,$ q_ {n,k}(e,τ)$具有与$ n $变量上的多项式环相同的希尔伯特系列,当$ n $变量不是$τ$不是扭转点时。我们还表明,$ q_ {n,k}(e,τ)$是一个koszul代数,因此,当$τ$不是扭转点时,全球尺寸$ n $的原因,对于所有$τ$而言,它是Artin-Schelter的常规。证明使用以下事实:定义$ q_ {n,k}(e,τ)$的二次关系空间是属于操作员家族的操作员$r_τ(τ)$的图像 $R_τ(z):\mathbb{C}^n\otimes\mathbb{C}^n\to\mathbb{C}^n\otimes\mathbb{C}^n$, $z\in\mathbb{C}$, that (we will show) satisfy the quantum Yang-Baxter equation with spectral parameter.

The algebras $Q_{n,k}(E,τ)$ introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers $n>k\ge 1$, a complex elliptic curve $E$, and a point $τ\in E$. The main result in this paper is that $Q_{n,k}(E,τ)$ has the same Hilbert series as the polynomial ring on $n$ variables when $τ$ is not a torsion point. We also show that $Q_{n,k}(E,τ)$ is a Koszul algebra, hence of global dimension $n$ when $τ$ is not a torsion point, and, for all but countably many $τ$, it is Artin-Schelter regular. The proofs use the fact that the space of quadratic relations defining $Q_{n,k}(E,τ)$ is the image of an operator $R_τ(τ)$ that belongs to a family of operators $R_τ(z):\mathbb{C}^n\otimes\mathbb{C}^n\to\mathbb{C}^n\otimes\mathbb{C}^n$, $z\in\mathbb{C}$, that (we will show) satisfy the quantum Yang-Baxter equation with spectral parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源