论文标题

HNHN:HyperGraph网络具有HyperEdge神经元

HNHN: Hypergraph Networks with Hyperedge Neurons

论文作者

Dong, Yihe, Sawin, Will, Bengio, Yoshua

论文摘要

HyperGraphs为许多现实世界数据集提供了自然的表示。我们提出了一个新颖的框架HNHN,以进行超图表的学习。 HNHN是一个超图卷积网络,具有非线性激活函数,均应用于超节点和高音,结合了标准化方案,可以灵活地调整高心脏性超息和高度顶点的重要性,并取决于数据集。与最先进的方法相比,我们证明了HNHN在现实世界数据集上的分类准确性和速度的提高。

Hypergraphs provide a natural representation for many real world datasets. We propose a novel framework, HNHN, for hypergraph representation learning. HNHN is a hypergraph convolution network with nonlinear activation functions applied to both hypernodes and hyperedges, combined with a normalization scheme that can flexibly adjust the importance of high-cardinality hyperedges and high-degree vertices depending on the dataset. We demonstrate improved performance of HNHN in both classification accuracy and speed on real world datasets when compared to state of the art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源