论文标题

解决量子对称简单排除过程的解决方案:连续情况

Solution to the Quantum Symmetric Simple Exclusion Process : the Continuous Case

论文作者

Bernard, Denis, Jin, Tony

论文摘要

量子对称的简单排除过程(Q-SSEP)是一种模型,用于沿着图形的量子振幅的边缘跳动的量子随机动力学,并在几个顶点上通过注入式 - 剥夺过程驱动到范围内。我们通过构建系统密度矩阵和量子期望值的稳定相关函数,为无限尺寸限制中一维Q-SEP的不变概率度量提供了解决方案。这些相关函数代码为波动的量子相关性和连贯性的丰富结构。尽管我们的构建不依赖于集成系统理论的标准技术,但它基于置换组和多项式之间的显着相互作用。我们顺便指出,通过与几何组合和辅助组合型的令人惊讶的连接来指出Q-SSEP相关函数的可能组合解释。

The Quantum Symmetric Simple Exclusion Process (Q-SSEP) is a model for quantum stochastic dynamics of fermions hopping along the edges of a graph with Brownian noisy amplitudes and driven out-of-equilibrium by injection-extraction processes at a few vertices. We present a solution for the invariant probability measure of the one dimensional Q-SSEP in the infinite size limit by constructing the steady correlation functions of the system density matrix and quantum expectation values. These correlation functions code for a rich structure of fluctuating quantum correlations and coherences. Although our construction does not rely on the standard techniques from the theory of integrable systems, it is based on a remarkable interplay between the permutation groups and polynomials. We incidentally point out a possible combinatorial interpretation of the Q-SSEP correlation functions via a surprising connexion with geometric combinatorics and the associahedron polytopes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源