论文标题

GLSM一般不变式及其共同学领域理论

General GLSM Invariants and Their Cohomological Field Theories

论文作者

Favero, David, Kim, Bumsig

论文摘要

我们在狭窄和广泛的部门案例中构建了GLSM不变性,以便一般选择稳定性,并证明它们形成了同一个田地理论。这是通过形成生活在扭曲霍奇综合体的局部同谋的虚拟基本阶级的类似物来获得的。这种通用结构来自使用两种新成分。首先,引入了用于矩阵因子化的汤姆 - 苏利文和神的分辨率,以处理行为不良的(未分离)模量空间。其次,利用矩阵分解的Atiyah类构建的局部Chern角色图可放弃使用Hochschild同源性。

We construct GLSM invariants for a general choice of stability in both the narrow and broad sector cases and prove they form a Cohomological Field Theory. This is obtained by forming the analogue of a virtual fundamental class which lives in the local cohomology of the twisted Hodge complex. This general construction comes from the use of two new ingredients. First, the use of the Thom-Sullivan and Godement resolutions applied to matrix factorizations are introduced to handle poorly behaved (non-separated) moduli spaces. Second, a localized Chern character map built from the Atiyah class of a matrix factorization is utilized to forgo the use of Hochschild homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源