论文标题
纳米级光学诱捕电势中原子运动的测量和模拟
Measurement and simulation of atomic motion in nanoscale optical trapping potentials
论文作者
论文摘要
在纳米纤维体验围绕纤维模式引导的纳米纤维体验周围的evanevancent田中的原子。但是,由于耦合的本质上强度的位置依赖性,整体的热运动限制了纳米纤维被困原子来进行某些量子任务。我们通过使用短轻脉冲在原子状态之间进行空间不均匀的种群转移来研究这种集合的热动力学。当我们监视该方案产生的原子的波数据包时,我们发现了一种阻尼的振荡行为,我们将其归因于原子的晃动和分散。振荡频率的范围约为100 kHz,在10 $μ$ s的时间表上,原子之间的动作量。与1000个经典颗粒合奏的蒙特卡洛模拟相比,对于25 $μ$ k和40 $μ$ k之间的模拟集合温度产生了合理的一致性。
Atoms trapped in the evanescent field around a nanofiber experience strong coupling to the light guided in the fiber mode. However, due to the intrinsically strong positional dependence of the coupling, thermal motion of the ensemble limits the use of nanofiber trapped atoms for some quantum tasks. We investigate the thermal dynamics of such an ensemble by using short light pulses to make a spatially inhomogeneous population transfer between atomic states. As we monitor the wave packet of atoms created by this scheme, we find a damped oscillatory behavior which we attribute to sloshing and dispersion of the atoms. Oscillation frequencies range around 100 kHz, and motional dephasing between atoms happens on a timescale of 10 $μ$s. Comparison to Monte Carlo simulations of an ensemble of 1000 classical particles yields reasonable agreement for simulated ensemble temperatures between 25 $μ$K and 40 $μ$K.