论文标题

旋转大厅电导率在没有保守的旋转的绝缘体中

Spin Hall conductivity in insulators with non-conserved spin

论文作者

Monaco, Domenico, Ulčakar, Lara

论文摘要

我们研究了带有非保守自旋的二维晶体绝缘子中自旋电流对小电场的线性响应。我们采用[J. Shi等人,物理。莱特牧师。 96,076604(2006)],它满足连续性方程并适合Onsager关系。我们使用与时间无关的扰动理论为旋转霍尔电导率提出了一个公式,该公式由“ chern样”术语组成,让人联想到为量子霍尔系统获得的kubo公式,以及一个校正术语,该术语涉及对旋转的不保存。我们说明了有关时间反转对称拓扑绝缘子的Bernevig-Hughes-Zhang模型和Kane-Mele模型的发现,并表明校正项随旋转式破坏性术语的幅度而二次地缩放。在这两种模型中,自旋旋转不保守时,自旋霍尔电导率都偏离了量化值。

We study the linear response of a spin current to a small electric field in a two-dimensional crystalline insulator with non-conserved spin. We adopt the spin current operator proposed in [J. Shi et al., Phys. Rev. Lett. 96, 076604 (2006)], which satisfies a continuity equation and fits the Onsager relations. We use the time-independent perturbation theory to present a formula for the spin Hall conductivity, which consists of a "Chern-like" term, reminiscent of the Kubo formula obtained for the quantum Hall systems, and a correction term that accounts for the non-conservation of spin. We illustrate our findings on the Bernevig-Hughes-Zhang model and the Kane-Mele model for time-reversal symmetric topological insulators and show that the correction term scales quadratically with the amplitude of the spin-conservation-breaking terms. In both models, the spin Hall conductivity deviates from the quantized value when spin is not conserved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源