论文标题
DO-CONV:深度参数化的卷积层
DO-Conv: Depthwise Over-parameterized Convolutional Layer
论文作者
论文摘要
卷积层是卷积神经网络(CNN)的核心构件。在本文中,我们建议增强具有额外深度卷积的卷积层,其中每个输入通道都用不同的2D内核进行卷积。这两个卷积的组成构成了过度参数化,因为它添加了可学习的参数,而所得的线性操作可以通过单个卷积层表示。我们将这种深度参数化的卷积层称为do-conv。我们通过广泛的实验表明,仅用DO-CONV层的传统卷积层取代就可以提高CNN在许多经典视觉任务上的性能,例如图像分类,检测和分割。此外,在推论阶段,深度卷积折叠成传统的卷积,将计算降低到完全等同于卷积层而没有过度参数化的卷积。正如DO-CONV引入了性能增长的情况下,没有引起推理的任何计算复杂性的增加,我们主张它作为常规卷积层的替代方案。我们在https://github.com/yangyanli/do-conv中打开do-conv的参考实现。
Convolutional layers are the core building blocks of Convolutional Neural Networks (CNNs). In this paper, we propose to augment a convolutional layer with an additional depthwise convolution, where each input channel is convolved with a different 2D kernel. The composition of the two convolutions constitutes an over-parameterization, since it adds learnable parameters, while the resulting linear operation can be expressed by a single convolution layer. We refer to this depthwise over-parameterized convolutional layer as DO-Conv. We show with extensive experiments that the mere replacement of conventional convolutional layers with DO-Conv layers boosts the performance of CNNs on many classical vision tasks, such as image classification, detection, and segmentation. Moreover, in the inference phase, the depthwise convolution is folded into the conventional convolution, reducing the computation to be exactly equivalent to that of a convolutional layer without over-parameterization. As DO-Conv introduces performance gains without incurring any computational complexity increase for inference, we advocate it as an alternative to the conventional convolutional layer. We open-source a reference implementation of DO-Conv in Tensorflow, PyTorch and GluonCV at https://github.com/yangyanli/DO-Conv.