论文标题

半无限超导体和分层超导体的过热领域在扩散极限:基于显微镜理论的结构优化

Superheating fields of semi-infinite superconductors and layered superconductors in the diffusive limit: structural optimization based on the microscopic theory

论文作者

Kubo, Takayuki

论文摘要

我们通过使用良好的bcs理论中的准绝妙绿色功能形式主义,研究了在扩散极限中的半无限超导体和分层超导体的过热领域。耦合的Maxwell-Usadel方程是自一求解的,以获得磁场的空间分布,筛选电流密度,穿透深度和配对电位。我们发现在扩散限制中,半无限超导体的过热字段由$ h_ {sh} = 0.795 h_ {c0} $在温度$ t \至0 $下给出。这里$ h_ {c0} $是零温度下的热力学关键场。另外,我们评估了分层超导体的$ h_ {sh} $作为层厚度的功能($ d $)的功能,并确定最大的厚度,以最大程度地提高$ h_ {sh} $的各种材料组合。还讨论了基于伦敦近似的$ h_ {sh}(d)$的定性解释。这项工作的结果可用于提高颗粒加速器的超导RF谐振腔的性能。

We investigate the superheating fields $H_{sh}$ of semi-infinite superconductors and layered superconductors in the diffusive limit by using the well-established quasiclassical Green's function formalism of the BCS theory. The coupled Maxwell-Usadel equations are self-consistently solved to obtain the spatial distributions of the magnetic field, screening current density, penetration depth, and pair potential. We find the superheating field of a semi-infinite superconductor in the diffusive limit is given by $H_{sh} = 0.795 H_{c0}$ at the temperature $T \to 0$. Here $H_{c0}$ is the thermodynamic critical-field at the zero temperature. Also, we evaluate $H_{sh}$ of layered superconductors in the diffusive limit as functions of the layer thicknesses ($d$) and identify the optimum thickness that maximizes $H_{sh}$ for various materials combinations. Qualitative interpretation of $H_{sh}(d)$ based on the London approximation is also discussed. The results of this work can be used to improve the performance of superconducting rf resonant cavities for particle accelerators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源