论文标题

查找患者零:图形神经网络的学习传染源

Finding Patient Zero: Learning Contagion Source with Graph Neural Networks

论文作者

Shah, Chintan, Dehmamy, Nima, Perra, Nicola, Chinazzi, Matteo, Barabási, Albert-László, Vespignani, Alessandro, Yu, Rose

论文摘要

找到流行病或零患者(P0)的来源可以为感染传播过程提供关键见解,并允许有效的资源分配。现有方法使用图理论中心度度量和昂贵的消息通讯算法,需要了解潜在的动态及其参数。在本文中,我们使用图神经网络(GNN)来研究这个问题以学习P0。我们在一类流行模型中建立了鉴定P0的理论限制。考虑到COVID-19的病史和特征,我们对合成和现实世界接触网络的不同流行模型进行了评估。 %我们观察到,GNN可以识别出与精度相近的P0,而无需明确的动力学或其参数。此外,GNN的速度比经典方法快100倍以上,用于推断任意图形拓扑。我们的理论界限还表明,流行病就像是滴答时钟,强调了早期接触追踪的重要性。我们找到了最长时间的时间,无论使用哪种算法,源的准确恢复变得不可能。

Locating the source of an epidemic, or patient zero (P0), can provide critical insights into the infection's transmission course and allow efficient resource allocation. Existing methods use graph-theoretic centrality measures and expensive message-passing algorithms, requiring knowledge of the underlying dynamics and its parameters. In this paper, we revisit this problem using graph neural networks (GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in a class of epidemic models. We evaluate our method against different epidemic models on both synthetic and a real-world contact network considering a disease with history and characteristics of COVID-19. % We observe that GNNs can identify P0 close to the theoretical bound on accuracy, without explicit input of dynamics or its parameters. In addition, GNN is over 100 times faster than classic methods for inference on arbitrary graph topologies. Our theoretical bound also shows that the epidemic is like a ticking clock, emphasizing the importance of early contact-tracing. We find a maximum time after which accurate recovery of the source becomes impossible, regardless of the algorithm used.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源