论文标题

化学粘合控制MNPT5p中的复杂磁性

Chemical Bonding Governs Complex Magnetism in MnPt5P

论文作者

Gui, Xin, Klein, Ryan A., Brown, Craig M., Xie, Weiwei

论文摘要

化学键的细微变化可能会导致固态材料中磁性的巨大旋转。 MNPT5P是无稀土铁磁MNPT5AS的新衍生物,被发现并在这项工作中呈现。合成MNPT5p,其晶体结构和化学组成的特征是X射线衍射以及能量分散性X射线光谱。因此,MNPT5P与空间群P4/mmm(第123号)中层层的四方结构结晶,其中面部共享的Mn@PT12多面层层被P层隔开。与在MNPT5AS中观察到的铁磁性相反,MNPT5P上的磁性测量值显示出抗磁性排序发生在〜188 K处,具有强烈的磁动脉旋转,并在AB-Plane中进出。此外,当应用高磁场时,会出现自旋流动过渡。通过分析在150 K和9 K处收集的粉末中子衍射(PND)图案的分析获得A型抗铁磁结构。计算出的电子结构表明,MN-3D和PT-5D轨道的杂交对于结构稳定性和观察到的磁性特性至关重要。 MNPT5P和MNPT5AS上的半经验分子轨道计算表明,与MNPT5AS相比,MNPT5P中最高占用分子轨道(HOMO)的P原子上缺乏4p特征。 MNPT5P的发现,以及我们先前报道的MNPT5AS,参数可调系统的终点,以研究化学键合化,该化学键将磁性从铁磁性到抗铁磁磁性(具有强旋转轨道耦合(SOC)效应)。

Subtle changes in chemical bonds may result in dramatic revolutions in magnetic properties in solid state materials. MnPt5P, a new derivative of the rare-earth-free ferromagnetic MnPt5As, was discovered and is presented in this work. MnPt5P was synthesized and its crystal structure and chemical composition were characterized by X-ray diffraction as well as energy-dispersive X-ray spectroscopy. Accordingly, MnPt5P crystallizes in the layered tetragonal structure with the space group P4/mmm (No. 123), in which the face-shared Mn@Pt12 polyhedral layers are separated by P layers. In contrast to the ferromagnetism observed in MnPt5As, the magnetic properties measurements on MnPt5P show antiferromagnetic ordering occurs at ~188 K with a strong magnetic anisotropy in and out of the ab-plane. Moreover, a spin-flop transition appears when a high magnetic field is applied. An A-type antiferromagnetic structure was obtained from the analysis of powder neutron diffraction (PND) patterns collected at 150 K and 9 K. Calculated electronic structures imply that hybridization of Mn-3d and Pt-5d orbitals are critical for both the structural stability and observed magnetic properties. Semi-empirical molecular orbitals calculations on both MnPt5P and MnPt5As indicate that the lack of 4p character on the P atoms at the highest occupied molecular orbital (HOMO) in MnPt5P may cause the different magnetic behavior in MnPt5P compared to MnPt5As. The discovery of MnPt5P, along with our previously reported MnPt5As, parametrizes the end points of a tunable system to study the chemical bonding which tunes the magnetic ordering from ferromagnetism to antiferromagnetism with strong spin-orbit coupling (SOC) effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源