论文标题
设计最小的挡板以破坏管道流中的湍流
Designing a minimal baffle to destabilise turbulence in pipe flows
论文作者
论文摘要
由最近实验的结果(Kühnen等人,流动涡轮燃烧。将挡板作为线性拖动$ \ mathbf {f}(\ Mathbf {x},t),t)= - χ(\ Mathbf {X})\ Mathbf {U} _ {tot}(\ MathBf {x},TOT} $ IS {tot(tot){umathbf}速度字段和$χ\ ge 0 $ a标量字段),在雷诺数$ re = 3000 $上设计了两个不同的优化问题来设计$χ$。首先,寻求根据$ l_1 $ norm of $χ$定义的最小挡板,从而最大程度地减少了流量的粘性耗散率。第二,处理流量总能量消耗的挡板进行处理。这两个问题均表明挡板应是轴对称的,并且径向位于管壁附近,但难以预测最佳的流向范围。手动搜索发现了一个最佳的挡板一条半径长,然后将其用于研究重弹性的幅度如何以$ re $ $ $ $ 15 \,000 $变化。在管壁上发现了较大的应力减轻,但牺牲了挡板上的压降降低。然后对挡板下游的断裂点进行估计,在该突破点下游,由于重弹性流动,壁上的应力减小可以补偿挡板产生的额外阻力。
Motivated by the results of recent experiments (Kühnen et al., Flow Turb. Combust., vol. 100, 2018, pp. 919-943), we consider the problem of designing a baffle (an obstacle to the flow) to relaminarise turbulence in pipe flows. Modelling the baffle as a spatial distribution of linear drag $\mathbf{f}(\mathbf{x},t)=-χ(\mathbf{x})\mathbf{u}_{tot}(\mathbf{x},t)$ within the flow ($\mathbf{u}_{tot}$ is the total velocity field and $χ\ge 0$ a scalar field), two different optimisation problems are considered to design $χ$ at a Reynolds number $Re=3000$. In the first, the smallest baffle defined in terms of a $L_1 $ norm of $χ$ is sought which minimises the viscous dissipation rate of the flow. In the second, a baffle which minimises the total energy consumption of the flow is treated. Both problems indicate that the baffle should be axisymmetric and radially localised near the pipe wall, but struggle to predict the optimal streamwise extent. A manual search finds an optimal baffle one radius long which is then used to study how the amplitude for relaminarisation varies with $Re$ up to $15\,000$. Large stress reduction is found at the pipe wall, but at the expense of an increased pressure drop across the baffle. Estimates are then made of the break even point downstream of the baffle where the stress reduction at the wall due to the relaminarised flow compensates for the extra drag produced by the baffle.