论文标题
Baumslag-Solitar群体的理性子集
Rational subsets of Baumslag-Solitar groups
论文作者
论文摘要
我们考虑了Baumslag-Solitar组的合理子集成员资格问题。这些组在算法群体理论领域构成了一个突出的阶级,最近它们被确定为理解$ \ text {gl}(2,\ mathbb {q})$的理性子集的障碍。 我们表明,Baumslag-Solitar组的合理子集成员资格$ \ text {bs}(1,q)$ at $ q \ ge 2 $是可决定的,并且pspace-complete。为此,我们介绍了$ \ text {bs}(1,q)$的元素的单词表示:它们的尖扩展(PE),一个注释的$ q $ - ary-ary扩展。将$ \ text {bs}(1,q)$的子集视为单词语言,这导致了$ \ text {bs}(1,q)$的自然概念:这些是$ \ text {bs}(bs}(bs}(bs}(1,q)的子集)的子集,其pe是普通语言的集合。我们的证明表明,$ \ text {bs}(1,q)$的每个理性子集都是pe-regrular。 由于$ \ text {bs}(1,q)$的PE定期子集具有封闭属性的设备齐全,因此我们获得了这些结果的进一步应用。我们的结果暗示(i)(i)有理子集的布尔组合的空虚是可决定的,(ii)$ \ text {bs}(1,q)$的每个固定理性子集的成员资格在对数空间中是可以决定的,并且(iii)是可以确定的。特别是,$ \ text {bs}(1,q)$有限生成的有限生成的子组是否具有有限的索引,这是可以决定的。
We consider the rational subset membership problem for Baumslag-Solitar groups. These groups form a prominent class in the area of algorithmic group theory, and they were recently identified as an obstacle for understanding the rational subsets of $\text{GL}(2,\mathbb{Q})$. We show that rational subset membership for Baumslag-Solitar groups $\text{BS}(1,q)$ with $q\ge 2$ is decidable and PSPACE-complete. To this end, we introduce a word representation of the elements of $\text{BS}(1,q)$: their pointed expansion (PE), an annotated $q$-ary expansion. Seeing subsets of $\text{BS}(1,q)$ as word languages, this leads to a natural notion of PE-regular subsets of $\text{BS}(1, q)$: these are the subsets of $\text{BS}(1,q)$ whose sets of PE are regular languages. Our proof shows that every rational subset of $\text{BS}(1,q)$ is PE-regular. Since the class of PE-regular subsets of $\text{BS}(1,q)$ is well-equipped with closure properties, we obtain further applications of these results. Our results imply that (i) emptiness of Boolean combinations of rational subsets is decidable, (ii) membership to each fixed rational subset of $\text{BS}(1,q)$ is decidable in logarithmic space, and (iii) it is decidable whether a given rational subset is recognizable. In particular, it is decidable whether a given finitely generated subgroup of $\text{BS}(1,q)$ has finite index.