论文标题

图后门

Graph Backdoor

论文作者

Xi, Zhaohan, Pang, Ren, Ji, Shouling, Wang, Ting

论文摘要

深度神经网络(DNN)的一个有趣的属性是它们对后门攻击的固有脆弱性 - 特洛伊木马模型以高度可预测的方式对触发式输入响应,而正常运行。尽管对于连续数据(例如,图像)的DNN上进行了大量工作,但对于离散结构化数据(例如,图),图形神经网络(GNNS)的脆弱性在很大程度上尚未探索,这对于它们在安全性敏感范围中的增加而言是高度关注的。为了弥合这一差距,我们提出了GTA,这是对GNNS的第一次后门攻击。与先前的工作相比,GTA以重要的方式出发:面向图形 - 将触发器定义为特定的子图,包括拓扑结构和描述性特征,需要为对手提供较大的设计谱。输入量 - 它动态地调整了触发因素,从而优化了攻击效果和逃避性;下游模型不合时宜 - 它可以很容易地启动,而无需了解下游模型或微调策略;并且可扩展攻击性 - 它可以针对托管性(例如节点分类)和归纳(例如图形分类)任务进行实例化,这构成了一系列关键安全应用程序的严重威胁。通过使用基准数据集和最新模型进行广泛的评估,我们证明了GTA的有效性。我们进一步为其有效性提供了分析依据,并讨论了潜在的对策,指出了一些有前途的研究方向。

One intriguing property of deep neural networks (DNNs) is their inherent vulnerability to backdoor attacks -- a trojan model responds to trigger-embedded inputs in a highly predictable manner while functioning normally otherwise. Despite the plethora of prior work on DNNs for continuous data (e.g., images), the vulnerability of graph neural networks (GNNs) for discrete-structured data (e.g., graphs) is largely unexplored, which is highly concerning given their increasing use in security-sensitive domains. To bridge this gap, we present GTA, the first backdoor attack on GNNs. Compared with prior work, GTA departs in significant ways: graph-oriented -- it defines triggers as specific subgraphs, including both topological structures and descriptive features, entailing a large design spectrum for the adversary; input-tailored -- it dynamically adapts triggers to individual graphs, thereby optimizing both attack effectiveness and evasiveness; downstream model-agnostic -- it can be readily launched without knowledge regarding downstream models or fine-tuning strategies; and attack-extensible -- it can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks, constituting severe threats for a range of security-critical applications. Through extensive evaluation using benchmark datasets and state-of-the-art models, we demonstrate the effectiveness of GTA. We further provide analytical justification for its effectiveness and discuss potential countermeasures, pointing to several promising research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源