论文标题

对量子厅过渡的互动影响:动态缩放定律和超单元性

Interaction effects on quantum Hall transitions: dynamical scaling laws and superuniversality

论文作者

Kumar, Prashant, Nosov, P. A., Raghu, S.

论文摘要

我们使用复合费用(CF)表示,研究了整数和阿贝尔分数量子霍尔(QH)过渡附近的电子电子相互作用的作用。相互作用效应被封装在CF理论中,作为量规波动。如果没有规格波动,CF系统就实现了非相互作用QH转换的“双重”表示。随着量规波动,该系统由带有$θ-$项的测量非线性Sigma模型(NLSM)管辖。尽管NLSM的强耦合固定点描述了过渡,但我们仍然能够推断出其两个属性。凭借$ 1/r $交互,1)过渡具有动态指数$ z = 1 $,而2)所有过渡均为“ superuniversal”:分数和整数QH转换在同一通用类中。通过短期互动,$ z = 2 $,超级工具的命运尚不清楚。

We study the role of electron-electron interactions near integer and abelian fractional quantum Hall (QH) transitions using composite fermion (CF) representations. Interaction effects are encapsulated in CF theories as gauge fluctuations. Without gauge fluctuations, the CF system realizes a `dual' representation of the non-interacting QH transition. With gauge fluctuations, the system is governed by a gauged nonlinear sigma model (NLSM) with a $θ-$term. While the transition is described by a strong-coupling fixed point of the NLSM, we are nevertheless able to deduce two of its properties. With $1/r$ interactions, 1) the transition has a dynamical exponent $z=1$, and 2) all transitions are `superuniversal': fractional and integer QH transitions are in the same universality class. With short-range interactions, $z=2$ and the fate of superuniversality remains unclear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源