论文标题

通过还原算法在三角曲线上添加

Addition via reduction algorithm on trigonal curves

论文作者

Bernatska, Julia, Kopeliovich, Yaacov

论文摘要

在本文中,我们提出了通过迭代还原算法对除数添加的直接和明确实现。算法的每次迭代都是将$ g+1 $除数的学位减少到〜$ g $的分数。这种方法允许以符号形式明确执行所有计算,这是针对曲线$ c_ {3,4} $,$ c_ {3,5} $在本文中进行的,也适用于最高$ C_ {3,13} $的较高属曲线,$ C_ {3,14} $。

In this paper we propose a direct and explicit realization of addition of divisors by means of an iterative reduction algorithm. Each iteration of the algorithm is the reduction of a degree $g+1$ divisor to a divisor of degree~$g$. Such an approach allows to carry out all computations explicitly in a symbolic form, which is done for curves $C_{3,4}$, $C_{3,5}$ in this paper, and also for curves of higher genera up to $C_{3,13}$, $C_{3,14}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源