论文标题
双色数字是正常的I I综。
Bicomplex numbers as a normal complexified f-algebra
论文作者
论文摘要
双光复合数的代数B被视为双曲线数量的阿基米德F-代数的络合。这种晶格理论方法使我们能够建立所谓的D-norms的新特性。特别是,我们表明d-norms在B中产生相同的拓扑。我们开发了双光复合数的D-Trigonomentric形式,这使我们对双摩尔氏菌的第n个根部的几何解释。我们使用开发的概念,尤其是D-norm的Riesz子纳米,以研究双斑zeta和伽马功能的均匀收敛性。本文的主要结果是对Riemann功能方程式和Euler的反射公式的双学术案例的概括。
The algebra B of bicomplex numbers is viewed as a complexification of the Archimedean f-algebra of hyperbolic numbers D. This lattice-theoretic approach allows us to establish new properties of the so-called D-norms. In particular, we show that D-norms generate the same topology in B. We develop the D-trigonometric form of a bicomplex number which leads us to a geometric interpretation of the nth roots of a bicomplex number in terms of polyhedral tori. We use the concepts developed, in particular that of Riesz subnorm of a D-norm, to study the uniform convergence of the bicomplex zeta and gamma functions. The main result of this paper is the generalization to the bicomplex case of the Riemann functional equation and Euler's reflection formula.