论文标题

子空间聚类以进行协方差表示和时间修剪以进行行动识别

Subspace Clustering for Action Recognition with Covariance Representations and Temporal Pruning

论文作者

Paoletti, Giancarlo, Cavazza, Jacopo, Beyan, Cigdem, Del Bue, Alessio

论文摘要

本文解决了人类行动识别的问题,该问题定义为从骨骼数据中以修剪序列显示哪种动作的分类。尽管为本应用设计的最先进的方法都受到监督,但在本文中,我们追求一个更具挑战性的方向:通过无监督的学习解决问题。为此,我们提出了一种新颖的子空间聚类方法,该方法利用协方差矩阵来增强动作的可区分性和时间戳修剪方法,使我们能够更好地处理数据的时间维度。通过广泛的实验验证,我们表明我们的计算管道超过了现有的无监督方法,但与监督方法相比,还可以导致有利的性能。

This paper tackles the problem of human action recognition, defined as classifying which action is displayed in a trimmed sequence, from skeletal data. Albeit state-of-the-art approaches designed for this application are all supervised, in this paper we pursue a more challenging direction: Solving the problem with unsupervised learning. To this end, we propose a novel subspace clustering method, which exploits covariance matrix to enhance the action's discriminability and a timestamp pruning approach that allow us to better handle the temporal dimension of the data. Through a broad experimental validation, we show that our computational pipeline surpasses existing unsupervised approaches but also can result in favorable performances as compared to supervised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源