论文标题

修剪飞行员:MIMO-OFDM系统的深度学习飞行员设计和渠道估计

Pruning the Pilots: Deep Learning-Based Pilot Design and Channel Estimation for MIMO-OFDM Systems

论文作者

Mashhadi, Mahdi Boloursaz, Gunduz, Deniz

论文摘要

使用大量的天线和子载波,由于宽带大量多输入多输出(MIMO)系统,由于试点传输而引起的开销。这可以显着降低整体频谱效率,从而降低了大型MIMO的潜在益处。在本文中,我们提出了一个基于神经网络(NN)的关节试点设计和频脱链路通道估计方案,用于频脱双链(FDD)MIMO正交频次频施加多路复用(OFDM)系统。拟议的NN体系结构使用完全连接的层来进行频率吸引的飞行员设计,并且通过利用MIMO通道矩阵中的固有相关性利用卷积NN层来优于线性最小均方误差(LMMSE)估计。我们提出的NN体系结构使用非本地注意模块来学习通道矩阵中的更长范围相关性,以进一步提高通道估计性能。我们还提出了一种有效的降低试点技术,通过在训练过程中逐渐从密集的NN层中修剪较少的显着神经元。这构成了NN修剪以减少飞行员传输开销的新型应用。我们的基于修剪的试点还原技术通过非均匀分配跨载波的飞行员并利用通道基质中通过卷积层和注意模块有效地利用频率间和 - 安坦相关性来降低开销。

With the large number of antennas and subcarriers the overhead due to pilot transmission for channel estimation can be prohibitive in wideband massive multiple-input multiple-output (MIMO) systems. This can degrade the overall spectral efficiency significantly, and as a result, curtail the potential benefits of massive MIMO. In this paper, we propose a neural network (NN)-based joint pilot design and downlink channel estimation scheme for frequency division duplex (FDD) MIMO orthogonal frequency division multiplex (OFDM) systems. The proposed NN architecture uses fully connected layers for frequency-aware pilot design, and outperforms linear minimum mean square error (LMMSE) estimation by exploiting inherent correlations in MIMO channel matrices utilizing convolutional NN layers. Our proposed NN architecture uses a non-local attention module to learn longer range correlations in the channel matrix to further improve the channel estimation performance. We also propose an effective pilot reduction technique by gradually pruning less significant neurons from the dense NN layers during training. This constitutes a novel application of NN pruning to reduce the pilot transmission overhead. Our pruning-based pilot reduction technique reduces the overhead by allocating pilots across subcarriers non-uniformly and exploiting the inter-frequency and inter-antenna correlations in the channel matrix efficiently through convolutional layers and attention module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源