论文标题

高度分级的Artinian代数的约旦单元中的理想发电机数量

Number of generators of ideals in Jordan cells of the family of graded Artinian algebras of height two

论文作者

Altafi, Nasrin, Iarrobino, Anthony, Khatami, Leila, Yaméogo, Joachim

论文摘要

我们让$ a = r/i $成为标准分级的Artinian代数商$ r = {\ sf k} [x,y] $,由理想$ i $ $ $ $的字段$ {\ sf k} $上的两个变量中的多项式戒指,让$ i $,让$ n $是其矢量空间空间。 A_1 $中的线性表单$ \ ell \的Jordan类型$ p_ \ ell $是$ n $的分区,以确定$ a $ a $ a $ \ ell $ $ \ ell $上的Jordan Block块分解 - 这是Nilpotent。前三位作者先前确定了$ n = \ dim _ {\ sf k}的哪些分区可能会作为Jordan类型作为Jordan类型的某种线性形式的$ \ Ell $,在分级的完整交点$ \ ell $上,$ a = r/(f,g)$ r $的$ a $ $ $ $ $,并且它们计算了每个完整互动$ t $ pare的数量。 我们在这里考虑了分级Artinian标准的namily $ \ mathrm {g} _t $ $ a = r/i $ of $ r = {\ sf k} [x,y] $,具有任意的希尔伯特函数$ h(a)= t $。 Jordan Cell $ \ MATHBB V(E_P)$对应于具有对角线长度$ t $的分区$ P $的所有理想$ i $ in $ r $中的所有理想是由$ p $确定的所有理想$ e_p $。这些单元格将品种$ \ mathrm {g} _t $分解为仿射空间。我们确定了每个单元格$ \ Mathbb V(e_p)$中的理想的通用数字$κ(p)$,从而概括了Arxiv的结果:1810.00716。特别是,我们确定了$κ(p)=κ(t)$的分区,这是定义代数$ a $ in $ \ mathrm {g} _t $的理想的通用发电机数。我们还计算具有给定$κ(p)$的对角线长度的分区数量。一个主要工具是组合和几何结果,使我们可以分配$ t $,任何分区$ p $对角度长度$ t $ s $ t $ simple $ t_i $和分区$ p_i $,因此$ \ mathbb v(e_p)$是单元格的产物,是单元格的产物$ \ mathrm {g} _ {t_i} $是Grassmannian。

We let $A=R/I$ be a standard graded Artinian algebra quotient of $R={\sf k}[x,y]$, the polynomial ring in two variables over a field ${\sf k}$ by an ideal $I$, and let $n$ be its vector space dimension. The Jordan type $P_\ell$ of a linear form $\ell\in A_1$ is the partition of $n$ determining the Jordan block decomposition of the multiplication on $A$ by $\ell$ -- which is nilpotent. The first three authors previously determined which partitions of $n=\dim_{\sf k}A$ may occur as the Jordan type for some linear form $\ell$ on a graded complete intersection Artinian quotient $A=R/(f,g)$ of $R$, and they counted the number of such partitions for each complete intersection Hilbert function $T$ arXiv:1810.00716.\par We here consider the family $\mathrm{G}_T$ of graded Artinian quotients $A=R/I$ of $R={\sf k}[x,y]$, having arbitrary Hilbert function $H(A)=T$. The Jordan cell $\mathbb V(E_P)$ corresponding to a partition $P$ having diagonal lengths $T$ is comprised of all ideals $I$ in $R$ whose initial ideal is the monomial ideal $E_P$ determined by $P$. These cells give a decomposition of the variety $\mathrm{G}_T$ into affine spaces. We determine the generic number $κ(P)$ of generators for the ideals in each cell $\mathbb V(E_P)$, generalizing a result of arXiv:1810.00716. In particular, we determine those partitions for which $κ(P)=κ(T)$, the generic number of generators for an ideal defining an algebra $A$ in $\mathrm{G}_T$. We also count the number of partitions $P$ of diagonal lengths $T$ having a given $κ(P)$. A main tool is a combinatorial and geometric result allowing us to split $T$ and any partition $P$ of diagonal lengths $T$ into simpler $T_i$ and partitions $P_i$, such that $\mathbb V(E_P)$ is the product of the cells $\mathbb V(E_{P_i})$, and $T_i$ is single-block: $\mathrm{G}_{T_i}$ is a Grassmannian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源