论文标题

高能QCD:多重分布和纠缠熵

High energy QCD: multiplicity distribution and entanglement entropy

论文作者

Gotsman, E., Levin, E.

论文摘要

在本文中,我们表明,高能的QCD导致多重分布$ \ frac {σ_n} {σ_{\ rm in}}}} \,\,\,\,\,\,\,\,\ frac {1} {n} {n} {n} {n} {n} 1} $,(其中$ n $表示平均粒子数),并且要纠缠熵$ s \,= \,\ ln n $,确认高能的党派统计数据是最大的纠缠。但是,$ n $的价值取决于Parton Cascade的运动学。特别是,对于$ n = xg(x,q)$,其中$ xg $是gluon结构功能,而在强子 - 摩托马碰撞中,$ n \ propto q^2_s(y)$,其中$ q_s $表示饱和量表。我们检查了此多重性分布描述了低倍数的LHC数据$ n \,<\,(3÷5)\,n $,超过了$ n $的较大值。我们认为这是由于我们的假设,即强子 - 戴隆碰撞ATC.M.速度$ y = 0 $是稀释的。我们表明,如果我们没有做出这个假设,则可以在Parton模型中大量多重性描述数据。

In this paper we show that QCD at high energies leads to the multiplicity distribution $\frac{σ_n}{σ_{ \rm in}}\,\,=\,\,\frac{1}{N}\,\Lb \frac{N\,-\,1}{N}\Rb^{n - 1}$, (where $N$ denotes the average number of particles), and to entanglement entropy $S \,=\,\ln N$, confirming that the partonic stat at high energy is maximally entangled. However, the value of $N$ depends on the kinematics of the parton cascade. In particular, for DIS$N = xG(x,Q)$ , where $xG$ is the gluon structure function, whil for hadron-hadron collisions, $N \propto Q^2_S(Y)$, where $Q_s$ denotes the saturation scale. We checked that this multiplicity distribution describes the LHC data for low multiplicities $n \,<\,(3 ÷5)\,N$, exceeding it for larger values of $n$. We view this as a result of our assumption, that the system of partons in hadron-hadron collisions atc.m. rapidity $Y=0$ is dilute. We show that the data can be described at large multiplicities in the parton model, if we do not make this assumption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源