论文标题
谐波超空间形式主义中的8维taub-nut-like hyper-kähler指标
An 8-dimensional Taub-NUT-like hyper-Kähler metric in harmonic superspace formalism
论文作者
论文摘要
使用谐波超空间形式主义,我们发现了一定的8维流形的度量。该歧管不是紧凑,代表了陶布 - 纳特歧管的8维概括。我们的猜想是,我们得出的指标等同于具有离散$ Z_2 $等轴测的已知度量,这可以从描述Hamiltonian还原的四个BPS单极管动力学的度量中获得。
Using the harmonic superspace formalism, we find the metric of a certain 8-dimensional manifold. This manifold is not compact and represents an 8-dimensional generalization of the Taub-NUT manifold. Our conjecture is that the metric that we derived is equivalent to the known metric possessing a discrete $Z_2$ isometry, which may be obtained from the metric describing the dynamics of four BPS monopoles by Hamiltonian reduction.