论文标题

动力kosterlitz-二维超低原子气体的无效理论

Dynamical Kosterlitz-Thouless Theory for Two-Dimensional Ultracold Atomic Gases

论文作者

Wu, Zhigang, Zhang, Shizhong, Zhai, Hui

论文摘要

在这封信中,我们基于动态koterlitz- theless-thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thou thouless理论,在跨二维原子超流体中为第一和第二声音开发了一种理论。我们采用了一组修改的两流体流体动力方程,这些方程融合了定量涡流的动力学,而不是用于三维超流体的常规涡流。就声音分散方程而言,修改基本上等同于用频率依赖性的静态超流体密度代替静态超流体密度,该密度由涡流的频率依赖性“介电常数”重新拟合。该理论有两个直接的后果。首先,因为有限频率的重量化超流体密度不会在整个超流体过渡中表现出不连续性,而与静态的超级流体密度相反,声音速度在整个过渡过程中平稳变化。其次,该理论包括由于游离涡流而引起的耗散,因此自然地描述了正常阶段中第二个声音的声音向扩散。只有一个拟合参数,我们的理论与整个过渡过程中声速的实验测量以及过渡附近的质量因素具有完美的一致性。未来的实验可以进一步验证该理论的预测。

In this letter we develop a theory for the first and second sound in a two-dimensional atomic superfluid across the superfluid transition based on the dynamic Koterlitz-Thouless theory. We employ a set of modified two-fluid hydrodynamic equations which incorporate the dynamics of the quantised vortices, rather than the conventional ones for a three-dimensional superfluid. As far as the sound dispersion equation is concerned, the modification is essentially equivalent to replacing the static superfluid density with a frequency dependent one, renormalised by the frequency dependent "dielectric constant" of the vortices. This theory has two direct consequences. First, because the renormalised superfluid density at finite frequencies does not display discontinuity across the superfluid transition, in contrast to the static superfluid density, the sound velocities vary smoothly across the transition. Second, the theory includes dissipation due to free vortices, and thus naturally describes the sound-to-diffusion crossover for the second sound in the normal phase. With only one fitting parameter, our theory gives a perfect agreement with the experimental measurements of sound velocities across the transition, as well as the quality factor in the vicinity of the transition. The predictions from this theory can be further verified by future experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源