论文标题

无监督的车辆重新识别并进行渐进式适应

Unsupervised Vehicle Re-identification with Progressive Adaptation

论文作者

Peng, Jinjia, Wang, Yang, Wang, Huibing, Zhang, Zhao, Fu, Xianping, Wang, Meng

论文摘要

车辆重新识别(REID)旨在识别各种非重叠相机视图的车辆。现有的方法在很大程度上依赖于标记的数据集来实现理想的性能,这不可避免地导致了由于训练域和现实世界中场景之间严重的域偏差而导致的命运下降。更糟糕的是,这些方法需要完整的注释,这是劳动力消费。为了应对这些挑战,我们提出了一种名为PAL的新型渐进式适应学习方法,该方法被称为PAL,该方法无需注释就从丰富的数据中删除。对于PAL,将数据适应模块用于源域,该模块生成具有与``伪目标样本''的数据分布相似的图像。这些伪样品与未标记的样品结合使用,这些样品是通过动态采样策略选择的,以使训练更快。我们进一步提出了加权标签平滑(WLS)损失,该损失考虑了具有不同簇的样品之间的相似性,以平衡伪标签的置信度。全面的实验结果验证了PAL在载体和VERI-776数据集上的优势。

Vehicle re-identification (reID) aims at identifying vehicles across different non-overlapping cameras views. The existing methods heavily relied on well-labeled datasets for ideal performance, which inevitably causes fateful drop due to the severe domain bias between the training domain and the real-world scenes; worse still, these approaches required full annotations, which is labor-consuming. To tackle these challenges, we propose a novel progressive adaptation learning method for vehicle reID, named PAL, which infers from the abundant data without annotations. For PAL, a data adaptation module is employed for source domain, which generates the images with similar data distribution to unlabeled target domain as ``pseudo target samples''. These pseudo samples are combined with the unlabeled samples that are selected by a dynamic sampling strategy to make training faster. We further proposed a weighted label smoothing (WLS) loss, which considers the similarity between samples with different clusters to balance the confidence of pseudo labels. Comprehensive experimental results validate the advantages of PAL on both VehicleID and VeRi-776 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源