论文标题

马伦特:恶意软件威胁情报的本体论

MALOnt: An Ontology for Malware Threat Intelligence

论文作者

Rastogi, Nidhi, Dutta, Sharmishtha, Zaki, Mohammed J., Gittens, Alex, Aggarwal, Charu

论文摘要

恶意软件威胁智能揭示了有关恶意软件,威胁参与者及其策略,妥协指标(IOC)的深刻信息以及来自分散威胁来源的不同平台中的脆弱性。这些集体信息可以指导安全操作中心(SOCS)使用的网络防御应用中的决策。在本文中,我们介绍了一个开源恶意软件本体 - 马伦特,允许信息和知识图生成的结构化提取,尤其是对于威胁智能。使用Malont的知识图是由包含数百个带注释的恶意软件威胁报告的语料库实例化的。知识图实现了由恶意软件引起的网络威胁的分析,检测,分类和归因。我们还使用Malont在示例威胁情报报告中演示了注释过程。这项研究是一项研究,是为了从异质在线资源收集恶意软件威胁智能的知识图(kgs)的更大努力的一部分。

Malware threat intelligence uncovers deep information about malware, threat actors, and their tactics, Indicators of Compromise(IoC), and vulnerabilities in different platforms from scattered threat sources. This collective information can guide decision making in cyber defense applications utilized by security operation centers(SoCs). In this paper, we introduce an open-source malware ontology - MALOnt that allows the structured extraction of information and knowledge graph generation, especially for threat intelligence. The knowledge graph that uses MALOnt is instantiated from a corpus comprising hundreds of annotated malware threat reports. The knowledge graph enables the analysis, detection, classification, and attribution of cyber threats caused by malware. We also demonstrate the annotation process using MALOnt on exemplar threat intelligence reports. A work in progress, this research is part of a larger effort towards auto-generation of knowledge graphs (KGs)for gathering malware threat intelligence from heterogeneous online resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源