论文标题

M2P2:使用自适应融合的多模式说服预测

M2P2: Multimodal Persuasion Prediction using Adaptive Fusion

论文作者

Bai, Chongyang, Chen, Haipeng, Kumar, Srijan, Leskovec, Jure, Subrahmanian, V. S.

论文摘要

在对抗环境中识别有说服力的说话者是一项关键任务。在全国大选中,政客们想代表他们进行有说服力的演讲者竞选活动。当公司面临不利的宣传时,他们希望在批评他们的对抗者面前参与说服力的拥护者。辩论代表了这些形式的对抗性说服力的共同平台。本文解决了两个问题:辩论结果预测(DOP)问题预测了谁赢得了辩论,而说服力预测的强度(IPP)问题预测了发言人在讲话之前和之后的选票数量的变化。尽管DOP先前已经研究过,但我们是第一个研究IPP的人。过去关于DOP的研究无法利用多模式数据的两个重要方面:1)多种方式通常在语义上排列,而2)不同的方式可能会为预测提供多种信息。我们的M2P2(多模式说服预测)框架是第一个使用多模式(声学,视觉,语言)数据来解决IPP问题的框架。为了利用不同方式的对齐,同时保持其提供的提示的多样性,M2P2设计了一个新型的自适应融合学习框架,该框架融合了从两个模块中获得的嵌入式的嵌入 - 一个对齐模块,该模块在模态和异质性模块之间提取共享信息,并从三个分开的指导训练中学习了不同模态的权重,该模量是从三个分开的指导训练中。我们在为DOP设计的流行IQ2U数据集上测试M2P2。我们还为IPP介绍了一个名为QPS的新数据集(来自中国流行的辩论电视节目的Qipashuo)。 M2P2在两个数据集上的最新基准都大大优于4个基线。

Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, M2P2 devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules -- an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test M2P2 on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show ) for IPP. M2P2 significantly outperforms 4 recent baselines on both datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源