论文标题

平坦正方形的简单3D等距嵌入

A Simple 3D Isometric Embedding of the Flat Square Torus

论文作者

Gott III, J. Richard, Vanderbei, Robert J.

论文摘要

从Gott(2019)的信封polyhedron(Squares-4附近)开始:一个单位立方体缺少其顶部和底部的脸。在垂直方向上伸展2倍,以使其侧面变为(2x1单位)矩形。这有8个面(4个外部,4个内部),8个顶点和16个边缘。 f-e+v = 0,意味着a(旋转)属= 1。它是平面圆环的等距。像任何多面体一样,它的脸部和边缘上的固有高斯曲率为零。由于每个顶点的4个直角矩形相遇,因此那里也没有角度缺陷和零高斯曲率。所有子午线和纬度周长相等(长4个单位)。

Start with Gott (2019)'s envelope polyhedron (Squares-4 around a point): a unit cube missing its top and bottom faces. Stretch by a factor of 2 in the vertical direction so its sides become (2x1 unit) rectangles. This has 8 faces (4 exterior, 4 interior), 8 vertices, and 16 edges. F-E+V = 0, implying a (toroidal) genus = 1. It is isometric to a flat square torus. Like any polyhedron it has zero intrinsic Gaussian curvature on its faces and edges. Since 4 right angled rectangles meet at each vertex, there is no angle deficit and zero Gaussian curvature there as well. All meridian and latitudinal circumferences are equal (4 units long).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源