论文标题
平坦正方形的简单3D等距嵌入
A Simple 3D Isometric Embedding of the Flat Square Torus
论文作者
论文摘要
从Gott(2019)的信封polyhedron(Squares-4附近)开始:一个单位立方体缺少其顶部和底部的脸。在垂直方向上伸展2倍,以使其侧面变为(2x1单位)矩形。这有8个面(4个外部,4个内部),8个顶点和16个边缘。 f-e+v = 0,意味着a(旋转)属= 1。它是平面圆环的等距。像任何多面体一样,它的脸部和边缘上的固有高斯曲率为零。由于每个顶点的4个直角矩形相遇,因此那里也没有角度缺陷和零高斯曲率。所有子午线和纬度周长相等(长4个单位)。
Start with Gott (2019)'s envelope polyhedron (Squares-4 around a point): a unit cube missing its top and bottom faces. Stretch by a factor of 2 in the vertical direction so its sides become (2x1 unit) rectangles. This has 8 faces (4 exterior, 4 interior), 8 vertices, and 16 edges. F-E+V = 0, implying a (toroidal) genus = 1. It is isometric to a flat square torus. Like any polyhedron it has zero intrinsic Gaussian curvature on its faces and edges. Since 4 right angled rectangles meet at each vertex, there is no angle deficit and zero Gaussian curvature there as well. All meridian and latitudinal circumferences are equal (4 units long).